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Outline

• Performance analysis of sparse 
matrix-vector product for 1 to N 
independent vectors

• Complexity models (flops, loads, 
stores, “stream loads and stores”)

• Refinements and future directions
• Summary of architectural 

“headroom” for multivectors



Background

• Historic memory performance improvement rate (7% per 
year) is far behind the CPU performance growth (about 
55% per year)

• Sequential performance on many machines is a low 
percentage of “peak”

• Complexity analysis of algorithms based on floating point 
operations alone is deceptive

• A proper complexity model for the sparse matrix-vector 
product illustrates the issues

♦ Same data access considerations as stencil-op kernel in 
explicit methods for PDEs

♦ Same as Krylov kernel and similar to preconditioner 
application kernel in implicit methods for PDEs



Three Potential Rate Limiters 
on Arithmetic Performance

• Memory Bandwidth
♦ Processor does not get data at the rate it requires

• Instruction Issue Rate
♦ If the loops are load/store bound, cannot perform a floating point 

operation in every cycle even if the operands are available in 
primary cache

♦ Several constraints (like primary cache latency, latency of floating 
point units etc.)  must be observed in deriving an optimal 
schedule

• Fraction of Floating Point Operations
♦ Not every instruction is a floating point instruction

• Each of these forces counting something 
besides just floating point operations



Implications of Bandwidth Limitations 
in Shared Memory Systems

• The processors on a node compete for 
the available memory bandwidth

• The computational phases that are 
memory bandwidth limited will not scale

♦ may even run slower because of the extra 
synchronizations 



Stream Benchmark on ASCI Red
MB/s for the Triad Operation

1521571E07
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12966661E04

2 Threads1 ThreadVector Size

Larger vectors in last three rows do not fit into 
cache and are bandwidth-limited



Sequential Performance of 
PETSc-FUN3D
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Analysis of a Simple Kernel:
Sparse Matrix Product

• Sparse matrix vector product is 
important part of many iterative 
solvers

• Simple analysis predicts much 
better performance bounds (based 
on the three architectural limits) 
than the “marketing” peak of a 
processor 



Matrix-vector Multiplication for a 
Single Vector

do i=1, n
fetch ia(i+1)
sum = 0
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1)-1  {

fetch ja(j), a(j), x (ja(j))
sum = sum + a(j) * x(ja(j))

enddo
Store sum into y(i)

enddo



Matrix Vector Multiplication for N 
Independent Vectors

do i = 1, n
fetch ia(i+1)
! loop over the non-zeros of the row
do j = ia(i), ia(i + 1) - 1

fetch ja(j), a(j), x1(ja(j)), ..…xN(ja(j))
do N fmadd (floating multiply add)

enddo
Store y1(i) ..…yN(i)

enddo

This version performs A {x1, …, xN}



Performance Issues for 
Sparse Matrix Vector Product

• Low available memory bandwidth 
combined with little data reuse

• High ratio of loads/stores to 
instructions/floating-point ops

• Stalling of multiple load/store units 
on the same cache line



Multivectors: Increasing 
Matrix Cache-line Reuse

• Multiplying more than one vector with the same matrix reuses 
the matrix-entry cache lines

• With enhanced matrix temporal locality, vector spatial locality 
can suffer, however

♦ Possibility of more vector-entry cache line conflicts 
♦ Possibility of output-vector cache line conflicts analogous to false 

sharing multithreaded applications
♦ Allocation of the vectors in memory – interlaced or non-interlaced?

• TLB misses (effect is to punish applications that refer to many different 
memory pages, even if total cache usage isn’t large)

♦ The lack of a universal, detailed model of performance makes 
detailed performance prediction difficult and case-by-case



Estimating the Memory 
Bandwidth Limitation

Assumptions

• Perfect Cache (only  compulsory misses; no overhead)
• No memory latency
• Unlimited number of loads and stores per cycle

Data Volume (m*n matrix in AIJ Format)

m*sizeof(int) + N*(m+n)*sizeof(double)
( ia, N input (size n) and output (size m) vectors)

+ nz* (sizeof(int) + sizeof(double)) 
( ja, and a arrays )

=  4*(m+nz)  +  8*(N*(m+n)+ nz)



• Number of Floating-Point Multiply Add  (fmadd) Ops = 
N*nz

• For square matrices (m=n) in AIJ format,

(Since nz >> n, Bytes transferred / fmadd  ~12/N)

• Similarly, for Block AIJ (BAIJ) format (blocksize b)

Estimating the Memory 
Bandwidth Limitation II
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Computing an Estimate of 
Maximum Possible Performance

• Bytes per floating multiply-add combined with 
memory bandwidth (bytes/second) give a 
bound on rate of execution of multiply-adds

• Quoted (vendor-supplied) memory bandwidth 
numbers are often useless

♦ Details of memory system hardware strongly affect 
performance and can be difficult to uncover

• Fortunately, a simple measurement is often 
adequate



Performance Summary on 
250 MHz R10000

• Matrix size, n = 90,708;  number of nonzero entries, nz 
= 5,047,120 (from computational aerodynamics, b=4)

• Stream performance is 358 MB/sec (for triad vector 
operation) http://www.cs.virginia.edu/stream

• Number of Vectors, N = 1, and 4
 

Bandwidth MFlops Format Number of 
Vectors 

Bytes / 
fmadd Required Achieved Ideal Achieved 

AIJ 1 12.36 3090 276 58 45 
AIJ 4 3.31 827 221 216 120 

BAIJ 1 9.31 2327  84 55 
BAIJ 4 2.54 635 229 305 175 

 
 • Ratio of 2.7 for AIJ and 3.2 for BAIJ in going from 1 to 4



Prefetching - Fully Use the 
Available Memory Bandwidth

• Many programs are not able to use the 
available memory bandwidth for various 
reasons

• Ideally a memory operation should be 
scheduled in each cycle since each cycle 
is a lost opportunity

• Compilers do not do enough prefetching
• Implementing and estimating the right 

amount of prefetching is hard



Estimating the Operation Issue 
Limitation, I

do i=1, m
jrow = ia(i+1) // 1Of, AT, Ld
ncol =  ia(i+1) -ia(i) // 1 Iop
Initialize, sum1 …..sumN //  N Ld
do j=1,ncol // 1 Ld
fetch ja(jrow), a(jrow), x1(ja(jrow)), ..…xN(ja(jrow)) 

// 1 Of, N+2 AT,  
N+2 Ld

do N fmadd (floating multiply add) // 2N Fop
enddo // 1 Iop, 1 Br
Store sum1…..sumN in y1(i) ..…yN(i) // 1 Of, N AT, and St

enddo                                                           // 1 Iop, 1 Br

AT:address transln; Br: branch; Iop: integer op; Fop: floating point op; 
Of: offset calculation; Ld: load; St: store



Estimating the Operation Issue 
Limitation, II

• Assumptions:
♦ Data items are in cache
♦ Each operation takes only one cycle to complete but 

multiple operations can graduate in one cycle
• If only one load or store can be issued in one cycle (as is the 

case on R10000 and many other processors), the best we can 
hope for is 

• Other restrictions (like primary cache latency, latency of 
floating point units etc.) need to be taken into account while 
creating the best schedule

MFlops/sPeak *
Stores and Loads ofNumber 

nsinstructiopoint  floating ofNumber 



Estimating the Fraction of 
Floating Point Operations

• Estimated number of floating point 
operations out of the total instructions:

• For N=1, If = 0.18 
• For N = 4, If = 0.34, this is one-third of 

“peak” performance (for the aero example)
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Realistic Measures of  Peak Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 5,047,120
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Experimental Performance
Sparse Matrix Vector Product

one vector, matrix size, m = 90,708, nonzero entries nz = 
5,047,120
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Implications

• Memory traffic is rate-limiting in sparse 
matrices

♦ Reuse data items
♦ Reuse items in cache
♦ Avoid jumping far in memory (TLB misses)

• Reducing the number of non-floating-
point instructions is also important

♦ Reuse items in registers (reduce loads, 
address computation)



Forming an Accurate 
Complexity Model

• If the problem does not fit in cache:
♦ Loads/Stores can dominate
♦ Compute memory bound assuming “perfect” cache for 

smaller data items
♦ Use “Stream” numbers for memory bandwidth

• If individual domains fit in cache:
♦ Still must consider cost of loading domains into cache
♦ Count total operations, not just flops

• L1 cache usually small
• L2, L3 cache take more cycles to access (weight operations 

accordingly)
♦ Time estimate is based on worst of the limits imposed by 

number of flops, memory references, and total instruction 
count

♦ Superlinear speedup is possible by staying within a faster 
memory level



Uniprocessor Memory 
Performance

• AlphaServer 8200 read latencies (3.33ns clock) 

LatencyMemory
Level ns cycles

Bandwidth
GB/sec

Cache 6.7 2 4.8
L2 Cache 20 6 4.8
L3 Cache 26 8 0.96
Main 253 76 1.2
DRAM 60 18 .03-.1

• Note that a[i] = b[i] * c[i] requires  7.2 
GB/sec to keep processor fully busy



Parallel Processor Memory 
Performance

• Average read latency
CPUs AlphaServer Origin2000

MHz 300 195
ns cycles ns cycles

1 176 53
2 190 57 313 61
4 220 66 405 79
8 299 117 528 103

16 641 125
32 710 138
64 796 155
128 903 176

… and worse (cluster and cluster-like 
scalable systems)



Conclusions

• Using multivectors can improve the performance of 
sparse matrix-vector product significantly

• “Algorithmic headroom” is available for modest blocking
• Simple models predict the performance of sparse 

matrix-vector operations on a variety of platforms, 
including the effects of memory bandwidth, and 
instruction issue rates

♦ achievable performance is a small fraction of stated peak 
for sparse matrix-vector kernels, independent of code 
quality

♦ compiler improvements and intelligent prefetching can 
help but the problem is fundamentally an architecture-
algorithm mismatch and needs an algorithmic solution



Future Directions

• Design better data structures and 
implementation strategies for sparse matrix 
vector and related operations

• Integrate understanding of the performance 
issues with developments in block-structured 
algorithms to produce linear and nonlinear 
solvers that achieve a higher fraction of peak 
performance on a per-node basis

• Look at important special cases in hierarchical 
algorithms where performance modeling  
suggests alternative data structures and 
algorithmic directions



Relevant URLs

• PETSc-FUN3D Project at Argonne
http://www.mcs.anl.gov/petsc-fun3d

• PETSc
http://www.mcs.anl.gov/petsc

• ODU NSF and ASCI projects
http://www.math.odu.edu/~keyes/nsf
http://www.math.odu.edu/~keyes/asci


